Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.514
Filtrar
1.
Int J Mol Sci ; 22(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34769236

RESUMO

Galactic cosmic rays are primarily composed of protons (85%), helium (14%), and high charge/high energy ions (HZEs) such as 56Fe, 28Si, and 16O. HZE exposure is a major risk factor for astronauts during deep-space travel due to the possibility of HZE-induced cancer. A systems biology integrated omics approach encompassing transcriptomics, proteomics, lipidomics, and functional biochemical assays was used to identify microenvironmental changes induced by HZE exposure. C57BL/6 mice were placed into six treatment groups and received the following irradiation treatments: 600 MeV/n 56Fe (0.2 Gy), 1 GeV/n 16O (0.2 Gy), 350 MeV/n 28Si (0.2 Gy), 137Cs (1.0 Gy) gamma rays, 137Cs (3.0 Gy) gamma rays, and sham irradiation. Left liver lobes were collected at 30, 60, 120, 270, and 360 days post-irradiation. Analysis of transcriptomic and proteomic data utilizing ingenuity pathway analysis identified multiple pathways involved in mitochondrial function that were altered after HZE irradiation. Lipids also exhibited changes that were linked to mitochondrial function. Molecular assays for mitochondrial Complex I activity showed significant decreases in activity after HZE exposure. HZE-induced mitochondrial dysfunction suggests an increased risk for deep space travel. Microenvironmental and pathway analysis as performed in this research identified possible targets for countermeasures to mitigate risk.


Assuntos
Radiação Cósmica/efeitos adversos , Complexo I de Transporte de Elétrons/metabolismo , Raios gama/efeitos adversos , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Lesões Experimentais por Radiação/enzimologia , Animais , Relação Dose-Resposta à Radiação , Fígado/patologia , Masculino , Camundongos , Mitocôndrias Hepáticas/patologia , Proteômica , Lesões Experimentais por Radiação/patologia , Voo Espacial
2.
Toxicol Appl Pharmacol ; 432: 115758, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678374

RESUMO

Mitochondrial dysfunction is a major factor in nonalcoholic fatty liver disease (NAFLD), preceding insulin resistance and hepatic steatosis. Carnosol (CAR) is a kind of diterpenoid with antioxidant, anti-inflammatory and antitumor activities. Peroxiredoxin 3 (PRDX3), a mitochondrial H2O2-eliminating enzyme, undergoes overoxidation and subsequent inactivation under oxidative stress. The purpose of this study was to investigate the protective effect of the natural phenolic compound CAR on NAFLD via PRDX3. Mice fed a high-fat diet (HFD) and AML-12 cells treated with palmitic acid (PA) were used to detect the molecular mechanism of CAR in NAFLD. We found that pharmacological treatment with CAR notably moderated HFD- and PA- induced steatosis and liver injury, as shown by biochemical assays, Oil Red O and Nile Red staining. Further mechanistic investigations revealed that CAR exerted anti-NAFLD effects by inhibiting mitochondrial oxidative stress, perturbation of mitochondrial dynamics, and apoptosis in vivo and in vitro. The decreased protein and mRNA levels of PRDX3 were accompanied by intense oxidative stress after PA intervention. Interestingly, CAR specifically bound PRDX3, as shown by molecular docking assays, and increased the expression of PRDX3. However, the hepatoprotection of CAR in NAFLD was largely abolished by specific PRDX3 siRNA, which increased mitochondrial dysfunction and exacerbated apoptosis in vitro. In conclusion, CAR suppressed lipid accumulation, mitochondrial dysfunction and hepatocyte apoptosis by activating PRDX3, mitigating the progression of NAFLD, and thus, CAR may represent a promising candidate for clinical treatment of steatosis.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Ativadores de Enzimas/farmacologia , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Peroxirredoxina III/metabolismo , Animais , Antioxidantes/farmacologia , Linhagem Celular , Dieta Hiperlipídica , Modelos Animais de Doenças , Ativação Enzimática , Hepatócitos/enzimologia , Hepatócitos/patologia , Fígado/enzimologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/toxicidade , Peroxirredoxina III/genética
3.
Hepatology ; 74(6): 3394-3408, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34216018

RESUMO

BACKGROUND AND AIMS: Most of the genetic basis of chronic liver disease remains undiscovered. APPROACH AND RESULTS: To identify genetic loci that modulate the risk of liver injury, we performed genome-wide association studies on circulating levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin across 312,671 White British participants in the UK Biobank. We focused on variants associated with elevations in all four liver biochemistries at genome-wide significance (P < 5 × 10-8 ) and that replicated using Mass General Brigham Biobank in 19,323 European ancestry individuals. We identified a genetic locus in mitochondrial glycerol-3-phosphate acyltransferase (GPAM rs10787429) associated with increased levels of ALT (P = 1.4 × 10-30 ), AST (P = 3.6 × 10-10 ), ALP (P = 9.5 × 10-30 ), and total bilirubin (P = 2.9 × 10-12 ). This common genetic variant was also associated with an allele dose-dependent risk of alcohol-associated liver disease (odd ratio [OR] = 1.34, P = 2.6 × 10-5 ) and fatty liver disease (OR = 1.18, P = 5.8 × 10-4 ) by International Classification of Diseases, 10th Revision codes. We identified significant interactions between GPAM rs10787429 and elevated body mass index in association with ALT and AST (P = 7.1 × 10-9 and 3.95 × 10-8 , respectively), as well as between GPAM rs10787429 and weekly alcohol consumption in association with ALT, AST, and alcohol-associated liver disease (P = 4.0 × 10-2 , 1.6 × 10-2 , and 1.3 × 10-2 , respectively). Unlike previously described genetic variants that are associated with an increased risk of liver injury but confer a protective effect on circulating lipids, GPAM rs10787429 was associated with an increase in total cholesterol (P = 2.0 × 10-17 ), LDL cholesterol (P = 2.0 × 10-10 ), and HDL cholesterol (P = 6.6 × 10-37 ). Single-cell RNA-sequencing data demonstrated hepatocyte-predominant expression of GPAM in cells that co-express genes related to VLDL production (P = 9.4 × 10-103 ). CONCLUSIONS: Genetic variation in GPAM is associated with susceptibility to liver injury. GPAM may represent a therapeutic target in chronic liver disease.


Assuntos
Acetiltransferases/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Mitocôndrias Hepáticas/enzimologia , Acetiltransferases/metabolismo , Estudos de Associação Genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Humanos , Mitocôndrias Hepáticas/metabolismo
4.
Methods Mol Biol ; 2310: 17-31, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095995

RESUMO

Mitochondria possess a genome that codes for proteins, in the same fashion as the nuclear genome. However, the small, circular mitochondrial DNA (mtDNA) molecule has a reduced base pair content, for it can only code for 2 rRNA, 22 tRNA molecules, and 13 proteins, all of them part of the mitochondrial respiratory chain. As such, all of the other mitochondrial components derive from nuclear genome. This separation leads to a requirement for a well-tuned coordination between both genomes, in order to produce fully functional mitochondria. A vast number of pathologies have been demonstrated to involve, to some extent, alterations in mitochondrial function that, no doubt, can be caused by alterations to the respiratory chain activity. As such, several methods and techniques have been developed to assess both content and function of mitochondrial proteins, in order to help understand mitochondrial involvement on the pathogenesis of disease. In this chapter, we will address some of these methods, with the main focus being on isolated mitochondria.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Hepáticas/enzimologia , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Animais , Fracionamento Celular , Centrifugação , Camundongos , Ratos
5.
Methods Mol Biol ; 2310: 33-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095996

RESUMO

In recent years, a number of advancements have been made in the study of entire mitochondrial proteomes in both physiological and pathological conditions. Naturally occurring iodothyronines (i.e., T3 and T2) greatly influence mitochondrial oxidative capacity, directly or indirectly affecting the structure and function of the respiratory chain components. Blue native PAGE (BN-PAGE) can be used to isolate enzymatically active oxidative phosphorylation (OXPHOS) complexes in one step, allowing the clinical diagnosis of mitochondrial metabolism by monitoring OXPHOS catalytic and/or structural features. Protocols for isolating mammalian liver mitochondria and subsequent one-dimensional (1D) BN-PAGE will be described in relation to the impact of thyroid hormones on mitochondrial bioenergetics.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Eletroforese em Gel de Poliacrilamida Nativa , Hormônios Tireóideos/farmacologia , Fracionamento Celular , Mitocôndrias Hepáticas/enzimologia , Fosforilação Oxidativa/efeitos dos fármacos
6.
Methods Mol Biol ; 2310: 69-77, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34095999

RESUMO

Investigation of mitochondrial metabolism perturbations and successful diagnosis of patients with mitochondrial abnormalities often requires assessment of human samples like muscle or liver biopsy as well as autopsy material. Immunohistochemical and histochemical examination is an important technique to investigate mitochondrial dysfunction that combined with spectrophotometric and Blue Native electrophoresis techniques can be an important tool to provide diagnosis of mitochondrial disorders. In this chapter, we focus on technical description of the methods that are suitable to detect the activity of complex I, II, and IV of mitochondrial respiratory chain in frozen sections of brain, heart, muscle, and liver biopsies/autopsy. The protocols provided can be useful not only for general assessment of mitochondrial activity in studied material, but they are also successfully used in the diagnostic procedures in case of suspicion of mitochondrial disorders. In the age of high-performance NGS sequencing, these methods can be used to confirm whether mutations are pathogenic by proving their impact on the activity of individual respiratory chain complexes.


Assuntos
Encéfalo/enzimologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/análise , Secções Congeladas , Microscopia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Musculares/enzimologia , Coloração e Rotulagem , Humanos , Mitocôndrias Cardíacas/enzimologia
7.
Biochimie ; 186: 28-32, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33857563

RESUMO

Glycogen storage disease type IV (GSD IV) is caused by mutations in the glycogen branching enzyme gene (GBE1) that lead to the accumulation of aberrant glycogen in affected tissues, mostly in the liver. To determine whether dysfunctional glycogen metabolism in GSD IV affects other components of cellular bioenergetics, we studied mitochondrial function in heterozygous Gbe1 knockout (Gbe1+/-) mice. Mitochondria isolated from the livers of Gbe1+/- mice showed elevated respiratory complex I activity and increased reactive oxygen species production, particularly by respiratory chain complex III. These observations indicate that GBE1 deficiency leads to broader rearrangements in energy metabolism and that the mechanisms underlying GSD IV pathogenesis may include more than merely mechanical cell damage caused by the presence of glycogen aggregates.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Sistema da Enzima Desramificadora do Glicogênio/deficiência , Doença de Depósito de Glicogênio Tipo IV/enzimologia , Mitocôndrias Hepáticas/enzimologia , Proteínas Mitocondriais/metabolismo , Animais , Complexo III da Cadeia de Transporte de Elétrons/genética , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo IV/genética , Doença de Depósito de Glicogênio Tipo IV/patologia , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Proteínas Mitocondriais/genética
8.
Physiol Res ; 70(2): 245-253, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33676386

RESUMO

Long non-coding RNAs (lncRNAs) are crucial in chronic liver diseases, but the specific molecular mechanism of lncRNAs in alcoholic fatty liver (AFL) remains unclear. In this study, we investigated the in-depth regulatory mechanism of mTOR affected by AIRN non-protein coding RNA (lncRNA-AIRN) in the development of AFL. LncRNA-AIRN was highly expressed in the liver tissues of AFL C57BL/6mice and oleic acid+alcohol (O+A)treated AML-12cells by using quantitative real-timePCR. RNA pull-down and RNA immunoprecipitation experiments demonstrated that there was an interaction between lncRNA-AIRN and mTOR, and that interference with lncRNA-AIRN could promote the mTOR protein level. Results ofcycloheximide-chase assay showed that the proteinlevel of mTOR was decreased with the treatment time after the knockdown of lncRNA-AIRN. Furthermore, the knockdown of lncRNA-AIRN reducedmTOR protein level by promoting the E3 ubiquitin ligase FBXW7-mediated ubiquitination.The lncRNA-AIRN/mTORaxis was involved in the regulation of the mitophagy of O+A treated hepatocytes, which was confirmed by the cell transfection and the MTT assay.SPSS 16.0 was used for analyzing data. The difference between the two groups was analyzed by performing Student's t-test, and ANOVA was used to analyze the difference when more than two groups. P values < 0.05 were considered to be significantly different.Our findings demonstrated that the knockdown of lncRNA-AIRN influencedmitophagy in AFL by promoting mTOR ubiquitination.


Assuntos
Fígado Gorduroso Alcoólico/enzimologia , Hepatócitos/enzimologia , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Mitofagia , RNA Longo não Codificante/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Regulação para Baixo , Proteína 7 com Repetições F-Box-WD/metabolismo , Fígado Gorduroso Alcoólico/genética , Fígado Gorduroso Alcoólico/patologia , Hepatócitos/patologia , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , RNA Longo não Codificante/genética , Transdução de Sinais , Ubiquitinação
9.
Biochimie ; 184: 116-124, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33662439

RESUMO

Manganese porphyrins are well-known protectors against the deleterious effects of pro-oxidant species such as superoxide ions and hydrogen peroxide. The present study investigated the antioxidant cytochrome c-like activities of Mn(III)TMPyP [meso-tetrakis (4-N-methyl pyridinium) porphyrin] against superoxide ion and hydrogen peroxide that remained unexplored for this porphyrin. The association of TMPyP with a model of the inner mitochondrial membrane, cardiolipin (CL)-containing liposomes, shifted +30 mV vs. NHE (normal hydrogen electrode) redox potential of the Mn(II)/Mn(III) redox couple. In CL-containing liposomes, Mn(III)TMPyP was reduced by superoxide ions and recycled by Fe(III)cytochrome c to the oxidized form. Similarly, isolated rat liver mitoplasts added to a sample of Mn(II)TMPyP promoted immediate porphyrin reoxidation by electron transfer to the respiratory chain. These results show that Mn(III)TMPyP can act as an additional pool of Fe(III)cytochrome c capable of transferring electrons that escape from the IV complex back into the respiratory chain. Unlike Fe(II)cytochrome c, Mn(II)TMPyP was not efficient for hydrogen peroxide clearance. Therefore, by reducing cytochrome c, Mn(II)TMPyP can indirectly contribute to hydrogen peroxide elimination.


Assuntos
Antioxidantes/química , Citocromos c/química , Mitocôndrias Hepáticas/enzimologia , Membranas Mitocondriais/enzimologia , Porfirinas/química , Animais , Ratos , Ratos Wistar
10.
Cardiovasc Res ; 117(11): 2340-2353, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-33523181

RESUMO

AIMS: Proteostasis maintains protein homeostasis and participates in regulating critical cardiometabolic disease risk factors including proprotein convertase subtilisin/kexin type 9 (PCSK9). Endoplasmic reticulum (ER) remodeling through release and incorporation of trafficking vesicles mediates protein secretion and degradation. We hypothesized that ER remodeling that drives mitochondrial fission participates in cardiometabolic proteostasis. METHODS AND RESULTS: We used in vitro and in vivo hepatocyte inhibition of a protein involved in mitochondrial fission, dynamin-related protein 1 (DRP1). Here, we show that DRP1 promotes remodeling of select ER microdomains by tethering vesicles at ER. A DRP1 inhibitor, mitochondrial division inhibitor 1 (mdivi-1) reduced ER localization of a DRP1 receptor, mitochondrial fission factor, suppressing ER remodeling-driven mitochondrial fission, autophagy, and increased mitochondrial calcium buffering and PCSK9 proteasomal degradation. DRP1 inhibition by CRISPR/Cas9 deletion or mdivi-1 alone or in combination with statin incubation in human hepatocytes and hepatocyte-specific Drp1-deficiency in mice reduced PCSK9 secretion (-78.5%). In HepG2 cells, mdivi-1 increased low-density lipoprotein receptor via c-Jun transcription and reduced PCSK9 mRNA levels via suppressed sterol regulatory binding protein-1c. Additionally, mdivi-1 reduced macrophage burden, oxidative stress, and advanced calcified atherosclerotic plaque in aortic roots of diabetic Apoe-deficient mice and inflammatory cytokine production in human macrophages. CONCLUSIONS: We propose a novel tethering function of DRP1 beyond its established fission function, with DRP1-mediated ER remodeling likely contributing to ER constriction of mitochondria that drives mitochondrial fission. We report that DRP1-driven remodeling of select ER micro-domains may critically regulate hepatic proteostasis and identify mdivi-1 as a novel small molecule PCSK9 inhibitor.


Assuntos
Aterosclerose/tratamento farmacológico , Dinaminas/antagonistas & inibidores , Retículo Endoplasmático/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Inibidores de PCSK9/farmacologia , Pró-Proteína Convertase 9/metabolismo , Quinazolinonas/farmacologia , Animais , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Dinaminas/genética , Dinaminas/metabolismo , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Células Hep G2 , Humanos , Fígado/enzimologia , Fígado/patologia , Camundongos Knockout para ApoE , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/genética , Mitocôndrias Hepáticas/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Pró-Proteína Convertase 9/genética , Complexo de Endopeptidases do Proteassoma , Mapas de Interação de Proteínas , Proteólise , Proteostase , Via Secretória
11.
Eur J Pharmacol ; 895: 173884, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33482179

RESUMO

We have recently demonstrated that aldose reductase (AR) inhibitor; fidarestat prevents doxorubicin (Dox)-induced cardiotoxic side effects and inflammation in vitro and in vivo. However, the effect of fidarestat and its combination with Dox on immune cell activation and the immunomodulatory effects are not known. In this study, we examined the immunomodulatory effects of fidarestat in combination with Dox in vivo and in vitro. We observed that fidarestat decreased Dox-induced upregulation of CD11b in THP-1 monocytes. Fidarestat further attenuated Dox-induced upregulation of IL-6, IL-1ß, and Nos2 in murine BMDM. Fidarestat also attenuated Dox-induced activation and infiltration of multiple subsets of inflammatory immune cells identified by expression of markers CD11b+, CD11b+F4/80+, Ly6C+CCR2high, and Ly6C+CD11b+ in the mouse spleen and liver. Furthermore, significant upregulation of markers of mitochondrial biogenesis PGC-1α, COX IV, TFAM, and phosphorylation of AMPKα1 (Ser485) was observed in THP-1 cells and livers of mice treated with Dox in combination with fidarestat. Our results suggest that fidarestat by up-regulating mitochondrial biogenesis exerts protection against Dox-induced immune and inflammatory responses in vitro and in vivo, providing further evidence for developing fidarestat as a combination agent with anthracycline drugs to prevent chemotherapy-induced inflammation and toxicity.


Assuntos
Aldeído Redutase/metabolismo , Doxorrubicina/toxicidade , Inflamação/induzido quimicamente , Macrófagos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Biogênese de Organelas , Aldeído Redutase/antagonistas & inibidores , Animais , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Citocinas/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Imidazolidinas/farmacologia , Inflamação/enzimologia , Inflamação/imunologia , Inflamação/prevenção & controle , Mediadores da Inflamação/metabolismo , Macrófagos/enzimologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/imunologia , Mitocôndrias Hepáticas/patologia , Monócitos/enzimologia , Monócitos/imunologia , Monócitos/patologia , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Células THP-1
12.
Toxicol Lett ; 338: 21-31, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33290831

RESUMO

Acetaminophen (APAP) overdose is the most common cause of acute liver failure in the United States and formation of APAP-protein adducts, mitochondrial oxidant stress and activation of the mitogen activated protein (MAP) kinase c-jun N-terminal kinase (JNK) are critical for APAP-induced cell death. However, direct evidence linking these mechanistic features are lacking and were investigated by examining the early temporal course of these changes in mice after 300 mg/kg APAP. Protein adducts were detectable in the liver (0.05-0.1 nmol/mg protein) by 15 and 30 min after APAP, which increased (>500 %) selectively in mitochondria by 60 min. Cytosolic JNK activation was only evident at 60 min, and was significantly attenuated by scavenging superoxide specifically in the cytosol by TEMPO treatment. Treatment of mouse hepatocytes with APAP revealed mitochondrial superoxide generation within 15 min, accompanied by hydrogen peroxide production without change in mitochondrial respiratory function. The oxidant stress preceded JNK activation and its mitochondrial translocation. Inhibitor studies identified the putative source of mitochondrial superoxide as complex III, which released superoxide towards the intermembrane space after APAP resulting in activation of JNK in the cytosol. Our studies provide direct evidence of mechanisms involved in mitochondrial superoxide generation after NAPQI-adduct formation and its activation of the MAP kinase cascade in the cytosol, which are critical features of APAP hepatotoxicity.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Citosol/enzimologia , Overdose de Drogas , Hepatócitos/enzimologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias Hepáticas/enzimologia , Proteínas Mitocondriais/metabolismo , Superóxidos/metabolismo , Animais , Benzoquinonas/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/patologia , Modelos Animais de Doenças , Ativação Enzimática , Hepatócitos/patologia , Iminas/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/patologia , Estresse Oxidativo , Transporte Proteico , Fatores de Tempo
13.
Biochim Biophys Acta Bioenerg ; 1862(1): 148332, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129827

RESUMO

The BlueNative page (BNGE) gel has been the reference technique for studying the electron transport chain organization since it was established 20 years ago. Although the migration of supercomplexes has been demonstrated being real, there are still several concerns about its ability to reveal genuine interactions between respiratory complexes. Moreover, the use of different solubilization conditions generates conflicting interpretations. Here, we thoroughly compare the impact of different digitonin concentrations on the liquid dispersions' physical properties and correlate with the respiratory complexes' migration pattern and supercomplexes. Our results demonstrate that digitonin concentration generates liquid dispersions with specific size and variability critical to distinguish between a real association of complexes from being trapped in the same micelle.


Assuntos
Digitonina/química , Complexo I de Transporte de Elétrons/química , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Hepáticas/enzimologia , Proteínas Mitocondriais/química , Eletroforese em Gel de Poliacrilamida Nativa , Animais , Camundongos
14.
Arch Biochem Biophys ; 692: 108535, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32781052

RESUMO

NAD(P)+ transhydrogenase (NNT) is located in the inner mitochondrial membrane and catalyzes a reversible hydride transfer between NAD(H) and NADP(H) that is coupled to proton translocation between the intermembrane space and mitochondrial matrix. NNT activity has an essential role in maintaining the NADPH supply for antioxidant defense and biosynthetic pathways. In the present report, we evaluated the effects of chemical compounds used as inhibitors of NNT over the last five decades, namely, 4-chloro-7-nitrobenzofurazan (NBD-Cl), N,N'-dicyclohexylcarbodiimide (DCC), palmitoyl-CoA, palmitoyl-l-carnitine, and rhein, on NNT activity and mitochondrial respiratory function. Concentrations of these compounds that partially inhibited the forward and reverse NNT reactions in detergent-solubilized mouse liver mitochondria significantly impaired mitochondrial respiratory function, as estimated by ADP-stimulated and nonphosphorylating respiration. Among the tested compounds, NBD-Cl showed the best relationship between NNT inhibition and low impact on respiratory function. Despite this, NBD-Cl concentrations that partially inhibited NNT activity impaired mitochondrial respiratory function and significantly decreased the viability of cultured Nnt-/- mouse astrocytes. We conclude that even though the tested compounds indeed presented inhibitory effects on NNT activity, at effective concentrations, they cause important undesirable effects on mitochondrial respiratory function and cell viability.


Assuntos
Inibidores Enzimáticos/farmacologia , Mitocôndrias Hepáticas/enzimologia , NADP Trans-Hidrogenase Específica para A ou B/antagonistas & inibidores , NADP Trans-Hidrogenase Específica para A ou B/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Animais , Inibidores Enzimáticos/química , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , NADP Trans-Hidrogenase Específica para A ou B/genética , Consumo de Oxigênio/genética
15.
Arch Toxicol ; 94(8): 2707-2729, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32607615

RESUMO

Evidence is mounting for the central role of mitochondrial dysfunction in several pathologies including metabolic diseases, accelerated ageing, neurodegenerative diseases and in certain xenobiotic-induced organ toxicity. Assessing mitochondrial perturbations is not trivial and the outcomes of such investigations are dependent on the cell types used and assays employed. Here we systematically investigated the effect of electron transport chain (ETC) inhibitors on multiple mitochondrial-related parameters in two human cell types, HepG2 and RPTEC/TERT1. Cells were exposed to a broad range of concentrations of 20 ETC-inhibiting agrochemicals and capsaicin, consisting of inhibitors of NADH dehydrogenase (Complex I, CI), succinate dehydrogenase (Complex II, CII) and cytochrome bc1 complex (Complex III, CIII). A battery of tests was utilised, including viability assays, lactate production, mitochondrial membrane potential (MMP) and the Seahorse bioanalyser, which simultaneously measures extracellular acidification rate [ECAR] and oxygen consumption rate [OCR]. CI inhibitors caused a potent decrease in OCR, decreased mitochondrial membrane potential, increased ECAR and increased lactate production in both cell types. Twenty-fourhour exposure to CI inhibitors decreased viability of RPTEC/TERT1 cells and 3D spheroid-cultured HepG2 cells in the presence of glucose. CI inhibitors decreased 2D HepG2 viability only in the absence of glucose. CII inhibitors had no notable effects in intact cells up to 10 µM. CIII inhibitors had similar effects to the CI inhibitors. Antimycin A was the most potent CIII inhibitor, with activity in the nanomolar range. The proposed CIII inhibitor cyazofamid demonstrated a mitochondrial uncoupling signal in both cell types. The study presents a comprehensive example of a mitochondrial assessment workflow and establishes measurable key events of ETC inhibition.


Assuntos
Agroquímicos/toxicidade , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Metabolismo Energético/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Desacopladores/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Células Hep G2 , Hepatócitos/enzimologia , Hepatócitos/patologia , Humanos , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/patologia , Consumo de Oxigênio/efeitos dos fármacos
16.
Int J Mol Sci ; 21(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664470

RESUMO

Hepatic ischemia/reperfusion (I/R) injury is a leading cause of organ dysfunction and failure in numerous pathological and surgical settings. At the core of this issue lies mitochondrial dysfunction. Hence, strategies that prime mitochondria towards damage resilience might prove applicable in a clinical setting. A promising approach has been to induce a mitohormetic response, removing less capable organelles, and replacing them with more competent ones, in preparation for an insult. Recently, a soluble form of adenylyl cyclase (sAC) has been shown to exist within mitochondria, the activation of which improved mitochondrial function. Here, we sought to understand if inhibiting mitochondrial sAC would elicit mitohormesis and protect the liver from I/R injury. Wistar male rats were pretreated with LRE1, a specific sAC inhibitor, prior to the induction of hepatic I/R injury, after which mitochondria were collected and their metabolic function was assessed. We find LRE1 to be an effective inducer of a mitohormetic response based on all parameters tested, a phenomenon that appears to require the activity of the NAD+-dependent sirtuin deacylase (SirT3) and the subsequent deacetylation of mitochondrial proteins. We conclude that LRE1 pretreatment leads to a mitohormetic response that protects mitochondrial function during I/R injury.


Assuntos
Inibidores de Adenilil Ciclases/uso terapêutico , Falência Hepática/prevenção & controle , Mitocôndrias Hepáticas/efeitos dos fármacos , Pirimidinas/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Tiofenos/uso terapêutico , Difosfato de Adenosina/metabolismo , Inibidores de Adenilil Ciclases/administração & dosagem , Inibidores de Adenilil Ciclases/farmacologia , Adenilil Ciclases/fisiologia , Animais , Constrição , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Artéria Hepática , Hormese/efeitos dos fármacos , Falência Hepática/enzimologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Consumo de Oxigênio , Fosforilação , Veia Porta , Pré-Medicação , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Distribuição Aleatória , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/enzimologia , Solubilidade , Tiofenos/administração & dosagem , Tiofenos/farmacologia
17.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32440681

RESUMO

Mitochondrial 2-enoyl-acyl-carrier protein reductase (MECR) is an enzyme in the mitochondrial fatty acid synthase (mtFAS) pathway. MECR activity remains unknown in the mechanism of insulin resistance in the pathogenesis of type 2 diabetes. In the present study, MECR activity was investigated in diet-induced obese (DIO) mice. Mecr mRNA was induced by insulin in cell culture, and was elevated in the liver of DIO mice in the presence hyperinsulinemia. However, MECR protein was decreased in the liver of DIO mice, and the reduction was blocked by treatment of the DIO mice with berberine (BBR). The mechanism of MECR protein regulation was investigated with a focus on ATP. The protein was decreased in the cell lysate and DIO liver by an increase in ATP levels. The ATP protein reduction was blocked in the liver of BBR-treated mice by suppression of ATP elevation. The MECR protein reduction was associated with insulin resistance and the protein restoration was associated with improvement of insulin sensitivity by BBR in the DIO mice. The data suggest that MECR protein is regulated in hepatocytes by ATP in association with insulin resistance. The study provides evidence for a relationship between MECR protein and insulin resistance.


Assuntos
Trifosfato de Adenosina/metabolismo , Dieta Hiperlipídica , Hepatócitos/enzimologia , Resistência à Insulina , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Obesidade/enzimologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Células 3T3-L1 , Animais , Berberina/farmacologia , Modelos Animais de Doenças , Regulação para Baixo , Hepatócitos/efeitos dos fármacos , Insulina/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/efeitos dos fármacos , Obesidade/tratamento farmacológico , Obesidade/etiologia , Obesidade/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética
18.
Life Sci ; 250: 117596, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240678

RESUMO

AIMS: ß-Estradiol (ß-E), one of the chemical forms of female gonad hormone exhibited antioxidant efficacy in biochemical system, in vitro. The aim of the study was to investigate whether any other mechanism of protection by ß-E to hepatic mitochondria in presence of stressor agent i.e.,a combination of Cu2+ and ascorbic acid is involved. MAIN METHODS: Freshly prepared goat liver mitochondria was incubated with stressors and 1 µM ß-E and post incubated with the same concentration at 37 °C at pH 7.4. Mitochondrial viability, biomarkers of oxidative stress, activities of Krebs cycle enzymes, mitochondrial membrane potential, Ca2+ permeability were measured. Mitochondrial morphology and binding pattern of ß-E with stressors were also studied. KEY FINDINGS: Upon incubation of mitochondria with Cu, ascorbic acid and their combination there is a significant decline in activities of four of Krebs cycle enzymes in an uncompetitive manner with a concomitant increase in Ca2+ permeability and membrane potential of inner mitochondrial membrane, which is withdrawn during co-incubation with ß-E, but was not reversed during post incubation with the ß-E. The final studies on mitochondrial membrane morphology using scanning electron microscope also exhibited damage. Isothermal titration calorimetry data also showed the negative heat change in the mixture of ß-E with ascorbic acid and also its combination with Cu2+. SIGNIFICANCE: Our results for the first time demonstrated that ß-E protects againstCu2+-ascorbate induced oxidative stress by binding with ascorbic acid. The new mechanism of binding of ß-E with stress agents may have a future therapeutic relevance.


Assuntos
Ácido Ascórbico/efeitos adversos , Cobre/efeitos adversos , Estradiol/farmacologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Feminino , Glutationa/metabolismo , Cabras , Técnicas In Vitro , Peroxidação de Lipídeos , Potencial da Membrana Mitocondrial , Mitocôndrias Hepáticas/enzimologia , Oxirredução , Permeabilidade , Ligação Proteica
19.
Shock ; 54(6): 783-793, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32195921

RESUMO

Hepatic ischemia/reperfusion (I/R) injury is a major concern in liver surgery settings. Mitochondria are critical targets or the origin of tissue injury, particularly I/R injury. Mitophagy, a selective form of autophagy, is a fundamental process that removes damaged or unwanted mitochondria for mitochondrial quality control, but its role in hepatic I/R remains unclear. In the present study, we investigated the role of mitophagy in hepatic I/R by focusing on PTEN-induced putative kinase 1 (PINK1). Livers from 10-week-old mice and primary hepatocytes were subjected to in vivo hepatic I/R and in vitro hypoxia-reoxygenation (H/R), respectively. Analyses of oxidative stress, immunoblotting, and ATP generation showed that hepatic I/R leads to mitochondrial damage. Dysfunctional mitochondria promoted reactive oxygen species (ROS) production and apoptosis. Hepatic I/R led to decreases in the mitochondrial proteins COX4 and TOM20 and mitochondrial DNA and increases in the autophagy-related indicators LC3 and P62, which indicates that hepatic I/R promotes mitophagy. We found that I/R also leads to endoplasmic reticulum stress, which has frequent signal communication with mitochondria through the mitochondria-associated membranes (MAMs). We showed that the mitophagy-related proteins Parkin, Beclin, optineurin were enhanced in hepatic I/R. No significant change is in PINK1 but it translocated to MAMs region to initiate mitophagy. The silencing PINK1 by shRNA in cultured primary hepatocytes reduced the level of H/R-induced mitophagy, leading to the accumulation of dysfunctional mitochondria during H/R, increased production of ROS, mitochondria-induced apoptosis, and eventually hepatocyte death. Taken together, these findings indicate that PINK1-mediated mitophagy plays a key role in mitochondrial quality control and liver cell survival during I/R.


Assuntos
Hepatopatias , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Membranas Mitocondriais/enzimologia , Mitofagia , Proteínas Quinases/metabolismo , Traumatismo por Reperfusão , Animais , Ativação Enzimática , Fígado/patologia , Hepatopatias/enzimologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Masculino , Camundongos , Mitocôndrias Hepáticas/patologia , Membranas Mitocondriais/patologia , Transporte Proteico , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
20.
Oxid Med Cell Longev ; 2020: 1249630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31998431

RESUMO

BACKGROUND & AIMS: Oxidative stress-related liver diseases were shown to be associated with elevated serum thyroid stimulating hormone (TSH) levels. Mitochondria are the main source of cellular reactive oxygen species. However, the relationship between TSH and hepatic mitochondrial stress/dysfunction and the underlying mechanisms are largely unknown. Here, we focused on exploring the effects and mechanism of TSH on hepatic mitochondrial stress. METHODS: As the function of TSH is mediated through the TSH receptor (TSHR), Tshr -/- mice and liver-specific Tshr -/- mice and liver-specific Tshr -/- mice and liver-specific. RESULTS: A relatively lower degree of mitochondrial stress was observed in the livers of Tshr -/- mice and liver-specific in vitro. Microarray and RT-PCR analyses showed that Tshr -/- mice and liver-specific. CONCLUSIONS: TSH stimulates hepatic CypD acetylation through the lncRNA-AK044604/SIRT1/SIRT3 signaling pathway, indicating an essential role for TSH in mitochondrial stress in the liver.


Assuntos
Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Estresse Oxidativo , Tireotropina/metabolismo , Acetilação , Animais , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Tireotropina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...